葡京网投app_澳门葡京游戏-【在线*平台】

图片
当前位置:首页 >期刊论文 >《最新论文》>正文

荧光蛋白自旋量子比特

 2025/8/23 9:08:48 《最新论文》 作者:科学网 小柯机器人 我有话说(0人评论) 字体大小:+

近日,美国芝加哥大学Maurer, Peter C.团队研究了荧光蛋白自旋量子比特。2025年8月20日,《自然》杂志发表了这一成果。

量子比特(量子位)是支持初始化、读出和相干控制的两级量子系统。光寻址自旋量子比特构成了新一代纳米级传感器的基础。这些量子比特的工程主要集中在固态系统上。然而,荧光蛋白因其遗传可编码性,而不是外源性荧光探针,已经成为体内显微镜的金标准。虽然荧光蛋白具有亚稳态三重态,但它们尚未作为量子比特进行研究。

研究组在增强黄色荧光蛋白中实现了一个光学可寻址的自旋量子比特。近红外激光脉冲使三重态的触发读出具有高达20%的自旋对比度。利用相干微波控制在液氮温度下增强的黄色荧光蛋白自旋,研究组测量了(16±2)Carr-Purcell-Meiboom-Gill去耦下相干时间。

研究组在哺乳动物细胞中表达量子比特,尽管细胞内环境复杂,但仍能保持对比和一致的控制。最后,他们展示了室温下对比度高达8%的细菌细胞的光学检测磁共振。该研究结果将荧光蛋白作为一个强大的量子比特平台,为生命科学领域的应用铺平了道路,比如纳米尺度的场传感和基于自旋的成像模式。

附:英文原文

Title: A fluorescent-protein spin qubit

Author: Feder, Jacob S., Soloway, Benjamin S., Verma, Shreya, Geng, Zhi Z., Wang, Shihao, Kifle, Bethel B., Riendeau, Emmeline G., Tsaturyan, Yeghishe, Weiss, Leah R., Xie, Mouzhe, Huang, Jun, Esser-Kahn, Aaron, Gagliardi, Laura, Awschalom, David D., Maurer, Peter C.

Issue&Volume: 2025-08-20

Abstract: Quantum bits (qubits) are two-level quantum systems that support initialization, readout and coherent control1. Optically addressable spin qubits form the foundation of an emerging generation of nanoscale sensors2,3,4,5,6,7. The engineering of these qubits has mainly focused on solid-state systems. However, fluorescent proteins, rather than exogenous fluorescent probes, have become the gold standard for in vivo microscopy because of their genetic encodability8,9. Although fluorescent proteins possess a metastable triplet state10, they have not been investigated as qubits. Here we realize an optically addressable spin qubit in enhanced yellow fluorescent protein. A near-infrared laser pulse enables triggered readout of the triplet state with up to 20% spin contrast. Using coherent microwave control of the enhanced-yellow-fluorescent-protein spin at liquid-nitrogen temperatures, we measure a (16±2)μs coherence time under Carr–Purcell–Meiboom–Gill decoupling. We express the qubit in mammalian cells, maintaining contrast and coherent control despite the complex intracellular environment. Finally, we demonstrate optically detected magnetic resonance in bacterial cells at room temperature with contrast up to 8%. Our results introduce fluorescent proteins as a powerful qubit platform that paves the way for applications in the life sciences, such as nanoscale field sensing and spin-based imaging modalities.

DOI: 10.1038/s41586-025-09417-w

Source: https://www.nature.com/articles/s41586-025-09417-w

来源:科学网 小柯机器人

版权声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。